S0960-894X(96)00006-6

FIRST SYNTHESIS OF ENANTIOMERICALLY PURE CARBOCYCLIC OXANOSINE AS A POTENTIAL CHEMOTHERAPEUTIC AGENT

Hiroko Kurata, Shigeru Nishiyama, and Shosuke Yamamura

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan

Kuniki Kato*

Research Laboratories, Pharmaceuticals Group, Nippon Kayaku Co. Ltd., Shimo, Kita-ku, Tokyo 115, Japan

Sari Fujiwara and Kazuo Umezawa

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 22.

Japan

Abstract: The first synthesis of optically active carbocyclic oxanosine 2 has been achieved in 14 steps from commercially available D-ribonic acid γ-lactone. When evaluated for the inhibition activity of NGF-induced differentiation on PC12 cells, 2 was about 10-fold less active than natural oxanosine.

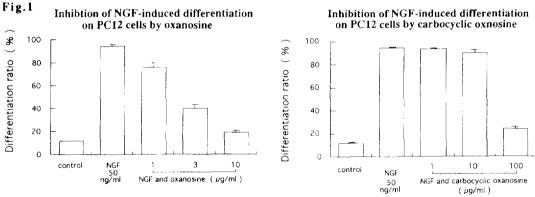
Oxanosine 1, a novel nucleoside antibiotic isolated from the culture broth of *Streptomyces capreolus* MG265-CF3, inhibits the growth of HeLa cells in culture and suppresses the growth of L1210 leukemia in mice.¹ Furthermore, 1 has proved to lower the intracellular level of guanine nucleotides and specifically inhibit differentiation mediated by G-proteins including Ras.² Recently, 1 was found to alter tumor cell morphology into the normal morphology in temperature sensitive Kirsten sarcoma virus-infected rat kidney (K-ras^{ts}-NRK) cells ³ and inhibit nerve growth factor (NGF)-induced morphological and enzymatic differentiation in rat pheochromocytoma PC12h cells.⁴ These noteworthy biological activities of 1 prompted our interest in the synthesis of carbocyclic analog of 1 with the hope that it might be metabolically more stable ⁵ and selective in its biological activity, as carbocyclic nucleosides have emerged as a promising group of compounds for drug discovery in the anti-tumor and anti-viral fields. In this report we describe the first synthesis and the inhibition activity of NGF-induced differentiation on PC12 cells of the enantiomerically pure carbocyclic oxanosine 2.

X = O Oxanosine

2 X = CH₂ Carbocyclic oxanosine

As shown in Scheme 1, the synthesis of the optically active carbocyclic oxanosine 2 began with the chiral alcohol 4 prepared from D-ribonic acid γ -lactone 3 according to the protocol of Borchardt *et al.* 6 and the formation of oxazinone ring was accomplished by the methodology developed by one of the authors on the occasion of the total synthesis of 1.7

Scheme 1 Reagents and Conditions: 1) 6 steps. See ref.5; 2) MsCl, Et₃N, CH₂Cl₂, 0 °C, 1 h; 3) NaN₃, DMF, 120 °C, 18 h; 4) LiAlH₄, THF, 0 °C, 2.5 h; 5) EtO-CH=N-CH(CN)COOBn, EtOH, reflux, 30 min; 6) EtOCONCS, CH₃CN, reflux, 2 h; 7) 0.1 N-NaOH, MeI, rt, 2 h; 8) 5N-KOH, MeOH, reflux, 30 min; 9) CF₃COOH-H₂O (2:1), 50 °C, 3 h.


The alcohol 4 was converted to the mesylate 5 with methanesulfonyl chloride in 95 % yield. Displacement with NaN3 in DMF gave the azide 6 in 84 % yield. Reduction of 6 with LiAlH4 afforded the amine 7 in 70 % yield. Reaction of compound 7 with ethyl N-(benzyloxycarbonylcyanomethyl)formimidate furnished the imidazole 8 in 55 % yield. Then, compound 8 was reacted with ethoxycarbonyl isothiocyanate to give the

thiourea 9 in 91 % yield, which with methyl iodide in dilute sodium hydroxide yielded the methylthio derivative 10 in 92 % yield. Cyclization of compound 10 with 5N-methanolic KOH under reflux for 30 min followed by neutralization of the reaction mixture with 2N-HCl provided the oxazinone 118 in 73 % yield. Finally, deprotection of 11 by heating in CF₃COOH/H₂O (2:1) at 50 °C afforded the target compound 29 in 81 % yield.

Inhibition studies of NGF-induced morphological differentiation:

The signal transduction through NGF receptor to induce differentiation in PC12 cells is known to include c-Ras function, since microinjection of anti-Ras inhibits NGF-induced differentiation in PC12 cells. ¹⁰ Recently, we also found that oxanosine 1 inhibited NGF-induced but not dibutyl cyclic AMP-induced differentiation of PC12h cells. ⁴ In this assay, carbocyclic oxanosine 2 did not induce flat morphology markedly in K-ras^{ts}-NRK cells, but as shown in Fig. 1, 2 inhibited the NGF-induced morphological differentiation at about 10 times higher concentration than that of 1. Thus 2 inhibited the c-Ras activity but not the activated Ras activity in cultured cells.

Inhibition of NGF-induced neurite formation by carbocyclic oxanosine in PC12h cells

Legend for Fig.1:

PC12h cells were incubated with oxanosine or carbocyclic oxanosine for 48 hrs in medium containing 0.2% semifetal calf serum. Cells with neurites were scored under the phase contrast microscope.

In summary, we have developed the first synthesis of carbocyclic oxanosine 2 from the readily available chiral cyclopentylalcohol 4 and have found that 2 inhibited the NGF-induced morphological differentiation at about 10 times higher concentration than that of oxanosine 1. 2 should be further pursued for its therapeutic potential as an anti-tumor and/or an anti-viral agent.

Acknowledgment:

We wish to thank Dr. Nobuyoshi Shimada, Research Laboratories, Pharmaceuticals Group, Nippon Kayaku Co. Ltd., for generous gifts of natural oxanosine.

286 H. Kurata et al.

References and Notes:

- Shimada, N.; Yagisawa, N.; Naganawa, H.; Takita, T.; Hamada, M.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1981, 34, 1216. Nakamura, H.; Yagisawa, N.; Shimada, N.; Takita. T.; Umezawa, H.; Iitaka, Y. J. Antibiot. 1981, 34, 1219.
- 2. Uehara, Y.; Hasegawa, M.; Hori, M.; Umezawa, H. Cancer Res. 1985, 45, 5230.
- 3. Itoh, O.; Kuroiwa, S.; Atsumi, S.; Umezawa, K.; Takeuchi, T.; Hori, M. Cancer Res. 1989, 49, 996.
- 4. Watanabe, Y.; Shimada, N.; Nagatsu, T.; Umezawa, K. Biogenic Amines 1994, 10, 509.
- 5. It has been found that the oxazinone ring in 1 is gradually hydrolyzed in mammalian sera to yield the bioinactive products. In an effort to prevent this enzymatic hydrolysis, 3-deazaoxanosine 12 has been prepared. Although 12 was resistant to the hydrolytic enzyme of mouse serum, it was much less active than 1 as an anti-tumor agent. Niitsuma, S.; Kato, K.; Takita, T.; Umezawa, H. Tetrahedron Lett. 1985, 26, 5785.

- 6. Wolfe, M. S.; Anderson, B. L.; Borcherding, D. R.; Borchardt, R. T. J. Org. Chem. 1990, 55, 4712.
- 7. Yagisawa, N.; Takita, T.; Umezawa, H.; Kato, K.; Shimada, N. Tetrahedron Lett. 1983, 24, 931. See also Luk, K-C; Moore, D. W.; Keith, D. D. Tetrahedron Lett. 1994, 35, 1007.
- 8. Selected spectroscopic data for 11: colorless foam, $[\alpha]^{26}_{D}$ -340 (c 0.57, CHCl₃); λ_{max} (CH₃CN) 246 nm (ϵ 8,900), and 283 nm (ϵ 4,700); ¹H NMR (270 MHz, CDCl₃) δ 1.20 (9H, s), 1.20-1.80 (10H, complex), 2.13 (1H, dt, J=10.8 and 11.1 Hz, 5'-H), 2.43 (2H, complex, 4'-H, 5'-H), 3.48 (2H, complex, 6'-H), 4.57 (2H, complex, 1'-H, 3'-H), 4.80 (1H, t, J=6.3 Hz, 2'-H), 5.81 (2H, br s, NH2), and 7.65 (1H, s); ¹³C NMR (100.5 MHz, CDCl₃) δ 23.5, 24.0, 25.0, 27.5, 34.2, 34.6, 37.5, 43.9, 61.4, 62.1, 73.0, 81.1, 83.9, 113.0, 114.0, 137.1, 152.3, 154.3, and 158.7; HRMS m/z 418.2214 calcd for C₂₁H₃₀N₄O₅, found 418.2245.
- 9. Selected spectroscopic data for 2: colorless foam, $[\alpha]^{21}_{\rm D}$ -200 (c 1.16, H₂O); $\lambda_{\rm max}$ (H₂O) 248 nm (ϵ 4,800), and 288 nm (ϵ 3,900); ¹H NMR (270 MHz, D₂O) δ 1.89 (1H, ddd, J=8.7, 10.4, and 13.0 Hz, 5'-H), 2.38 (1H, m, 4'-H), 2.57 (1H, dt, J=8.4 and 13.0 Hz, 5'-H), 3.84 (2H, d, J=6.3 Hz, 6'-H), 4.19 (1H, dd, J=3.5 and 5.7 Hz, 3'-H), 4.53 (1H, dd, J=5.7 and 9.1 Hz, 2'-H), 4.76 (1H, ddd, J=8.4, 9.1, and 10.4 Hz, 1'-H), and 8.03 (1H, s); ¹³C NMR (100.5 MHz, D₂O) δ 29.4, 45.6, 60.1, 63.9, 72.7, 76.1, 112.3, 139.7, 154.4, 157.5, and 160.5; MS m/z 283 (M++1); HRMS m/z 266.0776 calcd for C₁₁H₁₂N₃O₅ (M+-NH₂), found 266.0733.
- 10. Hagag, N.; Halegoura, S.; Viola, M. Nature 1986, 319, 680.